Welcome to pjautoml ‘s documentation!

Install

Requirements

The pjautoml package requires the following dependencies:

  • numpy
  • scipy
  • pjml

Install

The pjautoml is available on the PyPi . You can install it via pip as follow:

pip install -U pjautoml

It is possible to use the development version installing from GitHub:

pip install -U git@github.com:end-to-end-data-science/pjautoml.git

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and install all dependencies:

git clone git@github.com:end-to-end-data-science/pjautoml.git
cd pjautoml
pip install .

Test and coverage

If you want to test/test-coverage the code before to install:

$ make install-dev
$ make test-cov

Or:

$ make install-dev
$ pytest --cov=pjautoml/ tests/

Using pjautoml

TODO.

For more examples see The pjautoml example gallery.

API Documentation

This is the full API documentation of the pjautoml package.

pjautoml.cs: Configuration Space

Operand

graph.graph.Graph([name, path, nodes]) TODO.
graph.node.Node([params, children]) Partial settings for a component.
list.flist.ListCS(*css) Finite Config Space (FCS) is a representation of a discrete CS.
list.flist.CList(*css)
list.flist.FList(*css)

Operator

Data-driven configuration space operator
optimization.modelfree.best.Best(listcs[, …])
optimization.modelfree.random.RandomSearch(cs)
Configuration space operators
container.Container(*args, seed, name, path, …) TODO.
map.Map(*args[, seed]) TODO.
multi.Multi(*args[, seed]) TODO.
sample.Sample(cs[, n]) TODO.
chain.Chain(*css, **kwargs) TODO.
select.Select(*css, **kwargs) TODO.
shuffle.Shuffle(*css, **kwargs) A permutation is sampled.

pjautoml.util: Util Classes and Functions

parameter.Param(function, **kwargs) Base class for all kinds of algorithm (hyper)parameters.
parameter.CatP(function, **kwargs)
parameter.IntP(function, **kwargs)
parameter.FixedP(value)
parameter.OrdP(function, **kwargs)
parameter.RealP(function, **kwargs)

pjautoml.abs: Abstract Classes and Mixin

The pjautoml.abs submodule contains abstract classes and mixin.

mixin.asoperand.AsOperandCS

What is new on pjautoml package?

The pjautoml releases are available in PyPI and GitHub.

Version 0.X

Todo

About us

Contributors

You can find the contributors of this package here.

Citing pjautoml

If you use the pjautoml in scientific publication, we would appreciate citations to the following paper:

TODO

Getting started

Information to install, test, and contribute to the package.

API Documentation

In this section, we document expected types, functions, classes, and parameters available for AutoML building. We also describe our own AutoML systems.

Examples

A set of examples illustrating the use of pjautoml package. You will learn in this section how pjautoml works, patter, tips, and more.

What’s new ?

Log of the pjautoml history.

About us

If you would like to know more about this project, how to cite it, and the contributors, see this section.